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Abstract

Acceptance sampling, one of the techniques used in quality control, is analysed in present paper. We shall study 
sampling inspection plans when the remainder of a rejected lot is inspected, i.e. rectifying plans. These plans 
were introduced by Dodge and Romig for inspection by attributes (each inspected item is classified as either 
good or defective). Analogous rectifying plans for inspection by variables with one specification limit for the 
quality characteristic were introduced by the author of this contribution.  In present article we shall consider 
combined inspection (all items from the sample are inspected by variables, but remainder of a rejected lot  
is inspected only by attributes). We shall show that the combined inspection is the best in many situations. 
Using plans for combined inspection we can often achieve significant savings of the inspection cost under  
the same protection of producer and consumer. 
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INTRODUCTION  
The sampling inspection plans by attributes (each inspected item is classified as either good or defective) are 
acceptance plans (n, c), where n is the number of items in the sample (the sample size), c is the acceptance 
number. Using this acceptance plan we decide as follows – see e.g. Hald (1981): the lot is rejected when the 
number of defective items in the sample is greater than c. There are no assumptions for using these plans.  

The rectifying plans by attributes were introduced in Dodge and Romig (1998). In this book are two 
types of inspection plans. For inspection of separate lots are used the LTPD plans (LTPD is the lot tolerance 
percent defective), for inspection of series lots from the same producer are used the AOQL plans (AOQL 
is average outgoing quality limit). The Dodge-Romig plans (n, c) minimize the mean number Ia of items 
inspected per lot of process average quality p–, assuming that the remainder of a rejected lot is inspected 
under one of following conditions that protect the customer against receiving low-quality lots:
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a)	 the average outgoing quality,2 defined as the mean fraction defective after inspection when the 
fraction defective before inspection was p, is less or equal to pL for all values of input quality p, 
where 100pL is average outgoing quality limit AOQL (the chosen parameter) – the AOQL plans 
by attributes,

b)	 the lots with the fraction defective p ≥ pt (100pt is the lot tolerance percent defective LTPD, the 
chosen parameter) are accepted with probability which is less or equal to β, where β is consumer’s 
risk (commonly β = 0.10) – the LTPD plans by attributes.

The sampling inspection plans by variables are acceptance plans (n, k), where n is the number of items 
in the sample (the sample size), k is the acceptance constant. Assumptions: Measurements of a single 
quality characteristic X are independent, identically distributed normal random variables with unknown 
parameters µ and σ2. For the quality characteristic X is given either an upper specification limit U (the 
item is defective if its measurement exceeds U), or a lower specification limit L (the item is defective if its 
measurement is smaller than L). It is further assumed that the unknown parameter σ is estimated from 
the sample standard deviation s. Under the assumptions the lot is accepted when (see e.g. Klůfa, 2015):

�

where:

AOQ(p)

pL

p

Figure 1	 Typical graph of the average outgoing quality AOQ(p)

Source: Own construction

2	�	 The average outgoing quality AOQ is a function of the fraction defective before inspection p – see Klůfa (2020). A typical 
graph of this function is in Figure 1.



ANALYSES

376

Analogous rectifying plans by variables were introduced by the author of this contribution. These plans 
(n, k) for inspection by variables minimize the mean number Iv of items inspected per lot of process average 
quality , assuming that the remainder of a rejected lot is inspected under the same conditions which 
used Dodge-Romig for protection the consumer against receiving low-quality lots – see the condition a) 
and the condition b). In Klůfa (1994) are the rectifying LTPD plans by variables for inspection of separate 
lots. Calculation of these LTPD single sampling plans by variables using software Mathematica we can 
find in Klůfa (2010) using software R in Kasprikova and Klůfa (2011). In Klůfa (1997) are the rectifying 
AOQL plans by variables for inspection of series lots from the same producer. Calculation of the AOQL 
single sampling plans by variables we can find in Klůfa (2014).

Other papers concerning of Dodge-Romig rectifying plans are Chen and Chou (2001), Kasprikova 
and Klůfa (2015), Yazdi and Nezhad (2017), Klůfa (2018). Dodge-Romig LTPD sampling inspection 
plans by variables using EWMA statistics (the exponentially weighted moving average statistic) are in 
Kasprikova (2017). Dodge-Romig AOQL plans based on the EWMA statistic are in Kasprikova (2019). 
Other sampling inspection plans based on EWMA statics are in Wang (2016), Aslam, Azam and Jun 
(2015), Balamurali, Azam and Aslam (2014), Aslam, Azam and Jun (2018). Similar acceptance sampling 
plans we can find in Gogah and Al-Nnasser (2018), Yazdi, Nezhad., Shishebori and Mostafaeipour (2016), 
Wang and Lo (2016), Nezhad and Nesaee (2019). The AOQL plans for inspection by variables are also 
in Klůfa (2020), Chen (2016)

1 INSPECTION COSTS   
Let us denote L(p)  the probability of accepting a submitted lot with fraction defective p. The function 
L = L(p) is called the operating characteristic. The operating characteristic gives important information 
for producer and consumer. The function L = L(p) is decreasing function of p for each acceptance plan.

The number of inspected items when the lot with fraction defective p is accepted (n is the sample 
size, N is the lot size) is:

n   with probability   L(p),

and the number of inspected items when the lot with fraction defective p is rejected is:

N    with probability   1 – L(p).

Therefore, the mean number of items inspected per lot of process average  (the given parameter) is:

I = nL( ) + N(1 – L( )) = N – (N – n) L( ) = n + (N – n)(1 – L( )).           � (1)

1.1 Cost of inspection by attributes
For inspection by attributes the operating characteristic of acceptance plan (n, c) is (see e. g. Hald, 1981): 

 .� (2)

Therefore, according to (1) the mean number of items inspected per lot of process average quality   
is  Ia = N – (N – n) L( ; n, c) = n + (N – n)(1 – L( ; n, c)), i.e.:
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 .� (3)

Let us denote ca the cost of inspection of one item by attributes, cv the cost of inspection of the same 
item by variables. Usually is cv > ca (when cv ≤ ca, the rectifying plans for inspection by variables are always 
more economical than the corresponding attribute sampling plans, since the sample size for inspection by 
variables is always less than the corresponding sample size for inspection by attributes). Under the notation:

Iaca = Ca ,� (4)

is the mean cost of inspection by attributes per lot of process average quality , assuming that the remainder 
of a rejected lot is inspected.

1.2 Cost of inspection by variables
For inspection by variables the operating characteristic of acceptance plan (n, k) is (see e. g. Kaspříková 
and Klůfa, 2011): 

� (5)

where: g(t; n – 1, u1–p ) is probability density function of noncentral Student t-distribution with (n 
– 1) degrees of freedom and noncentrality parameter λ = u1–p   (u1–p is quantile of standard normal 
distribution of order 1 – p). Therefore, according to (1) the mean number of items inspected per lot of 
process average quality  is Iv = N – (N – n) L( ; n, k) = n + (N – n)(1 – L( ; n, k)), i.e.:

� (6)

and

Ivcv = Cv� (7)

is the mean cost of inspection by variables per lot of process average quality , assuming that the remainder 
of a rejected lot is inspected.

1.3 Cost of combined inspection by variables and attributes
For combined inspection by variables and attributes (all items from the sample are inspected by variables, 
but remainder of rejected lot is inspected only by attributes) the inspection cost, when the lot with fraction 
defective p is accepted, is:

ncv   with probability   L(p; n, k),

and the inspection cost, when the lot with fraction defective p is rejected, is:

ncv + (N – n) ca   with probability   1 – L(p; n, k).

Therefore, the mean cost of combined inspection per lot of process average quality  is:
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Cva = ncv L( ; n, k) + [ncv + (N – n) ca ] [1 – L( ; n, k)],

i.e.:

Cva = ncv + (N – n) ca(1 – L( ; n, k)),                                        � (8)

where the operating characteristic is in Formula (5). Instead of  Cva we can minimize Cva/ca, i.e.:

Iva = ncr + (N – n)(1 – L( ; n, k)),� (9)

where:

                                � (10)

The new parameter cr is a ratio of the cost of inspection of one item by variables and the cost of inspection 
of the same item by attributes. Usually cr > 1 (when cr ≤ 1, the acceptance plans for inspection by variables 
are always more economical than the corresponding attribute sampling plans). For determination of 
acceptance plan by variables and attributes (combined inspection) we must first estimate in each situation 
parameter cr from economical point of view.

2 COMPARISON OF THE INSPECTION COSTS   
2.1 Inspection by variables versus inspection by attributes
For the comparison of the single sampling plans for inspection by variables with the corresponding 
Dodge-Romig plans for inspection by attributes from economical point of view we shall define the 
parameter S by formula: 

 .� (11)

When  S > 0, acceptance plan for inspection by variables is more economical than the corresponding 
Dodge-Romig plan for inspection by attributes, when S < 0, acceptance by attributes is preferable. The 
parameter S represents the percentage of savings of inspection cost when acceptance plan for inspection  
by variables is used instead of the corresponding plan for inspection by attributes. Using (10) the percentage 
of savings of inspection cost is:

 .� (12)

2.2 Combined inspection versus inspection by attributes
For the comparison of the single sampling plans for combined inspection with the corresponding Dodge-
Romig plans for inspection by attributes from economical point of view we shall similarly use the parameter:

 .� (13)

When  S > 0, combined inspection is more economical than inspection by attributes, when S < 0, 
inspection by attributes is preferable. Since Cva = Iva ca, the percentage of savings of inspection cost is:

 .� (14)
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2.3 Combined inspection versus inspection by variables
If cr > 1, the combined inspection is always more economical than the inspection by variables, as follows 
from the following mathematical theorem. 

Theorem: Let us given N,  and pt(pL).  If cr > 1, then the minimum mean cost of combined inspection 
per lot of process average quality  is less than the minimum mean cost of inspection by variables. 

Proof: We must prove inequality:

where: M is the set of plans (n, k) for which one of conditions a) or b) applies - see Introduction. Since 
Cva = Ivaca and  Cv = Ivcv, according to (10) we must prove:

� (15)

because:

and  

inequality (15) is evident.
Illustration for the AOQL plans: The AOQL was chosen 0.1%, i.e. pL = 0.001. The process average 

fraction defective is  = 0.0008 and cr = 2 (the cost of inspection of one item by variables is twice  
the cost of inspection of one item by attributes). For inspection a lot with N = 500 items we shall look for 
the AOQL plan for inspection by attributes, the AOQL plan for inspection by variables and AOQL plan 
for combined inspection. These AOQL plans we shall compare from economical point of view.

For input parameters of acceptance sampling pL = 0.001, N = 500,  = 0.0008 we find the AOQL plan 
for inspection by attributes in Dodge and Romig (1998). We have:

n = 210, c = 0.

Under the same input parameters of acceptance sampling we can compute the corresponding AOQL 
plan for inspection by variables (see Klůfa, 2014):

n = 75, k = 2.8265.

Moreover, for cr = 2 we can calculate according to (12) the percentage of savings of inspection cost:

S = 8.

It means that under the same protection of consumer the AOQL plan for inspection by variables (75, 
2.8265) is more economical than the corresponding Dodge-Romig AOQL attribute sampling plan (210, 
0). Since S = 8, it can be expected approximately 8% saving of the inspection cost.
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Under input parameters of acceptance sampling pL = 0.001, N = 500,  = 0.0008  and moreover cr = 2 
we can compute the corresponding AOQL plan for combined inspection (see Klůfa, 2014):

n = 49, k = 2.8561,

and according to (14) the percentage of savings of inspection cost:

S = 30.

It means that under the same protection of consumer the AOQL plan for combined inspection  
(49, 2.8561) is more economical than the corresponding Dodge-Romig AOQL attribute sampling plan 
(210, 0). Since S = 30, it can be expected approximately 30% saving of the inspection cost. 

Combined inspection is clearly the best in this situation – see also Table 1.

Table 1 AOQL plans for inspection by attributes (upper row), variables (middle row) and combined inspection (lower 
	 row) and percentage of savings of inspection cost S (in %)

pL = 0.001, cr = 2.0

/N 500 1 000 4 000 10 000 50 000 100 000

0.0001

(210, 0) (270, 0) (340, 0) (355, 0) (830, 1) (835, 1)

(34, 2.8973)
S = 60

(41, 2.8885) 
S = 64

(56, 2.8799) 
S = 70

(67 ,2.8776) 
S = 76

(88, 2.8778) 
S = 80

(97, 2.8788)
S = 80

(28, 2.9303)
S = 66

(34, 2.9101) 
S = 70

(49, 2.8865)
S = 74

(59, 2.8809) 
S = 79

(79, 2.8777)
S = 81

(88, 2.8781)
S = 83

0.0002

(210, 0) (270, 0) (340, 0) (355, 0) (830, 1) (835, 1)

(42, 2.8709)
S = 50

(52, 2.8699)
S = 56

(77, 2.8721)
S = 66

(95, 2.8759)
S = 76

(131, 2.8840)
S = 78

(148, 2.8877)
S = 84

(33, 2.9012)
S = 58

(43, 2.8841)
S = 63

(65, 2.8751)
S = 71

(82, 2.8756)
S = 80

(115, 2.8811)
S = 81

(131, 2.8844)
S = 85

0.0003

(210, 0) (270, 0) (340, 0) (775, 1) (1 330, 2) (1 350, 2)

(48, 2.8579)
S = 42

(63, 2.8600)
S = 48

(98, 2.8715)
S = 64

(125, 2.8798)
S = 68

(180, 2.8934)
S=74

(206, 2.8987)
S = 78

(37, 2.8857)
S = 52

(49, 2.8738)
S = 57

(80, 2.8718)
S = 69

(105, 2.8769)
S = 73

(156, 2.8888)
S = 78

(181, 2.8941)
S = 80

0.0004

(210, 0) (270, 0) (340, 0) (775, 1) (1 330, 2) (1 350, 2)

(54, 2.8482)
S = 34

(72, 2.8549)
S = 42

(119, 2.8732)
S = 60

(158, 2.8853)
S = 64

(240, 2.9038)
S = 72

(280, 2.9107)
S = 78

(41, 2.8735)
S = 47

(55, 2.8666)
S = 53

(95, 2.8714)
S = 67

(130, 2.8806)
S = 69

(204,2.8978)
S = 76

(241, 2.9047)
S = 81

0.0006

(210, 0) (270, 0) (695, 1) (775, 1) (1 870, 3) (2 480, 4)

(65, 2.8353)
S = 20

(91, 2.8486)
S = 28

(170, 2.8794)
S = 46

(244, 2.8986)
S = 54

(417, 2.9262)
S = 66

(512, 2.9361)
S = 68

(46, 2.8618)
S =  38

(65, 2.8587)
S= 44

(127, 2.8741)
S =  57

(188, 2.8903)
S  = 63

(337, 2.9174)
S = 7 1

(419, 2.9276)
S = 74

0.0008

(210, 0) (270, 0) (695, 1) (775, 1) (2 420, 4) (3 070, 5)

(75, 2.8265)
S = 8

(111, 2.8447)
S = 14

(231, 2.8859)
S = 30

(363, 2.9117)
S = 42

(749, 2.9495)
S = 52

(1 018, 2.9635)
S = 58

(49, 2.8561)
S = 30

(73, 2.8545)
S = 36

(159, 2.8780)
S  = 47

(258, 2.9004)
S = 56

(562, 2.9383)
S = 62

(749, 2.9517)
S = 67

0.0010

(210, 0) (270, 0) (695, 1) (775, 1) (2 420, 4) (3 070, 5)

(75, 2.8265)
S = 8

(111, 2.8447)
S = 14

(231, 2.8859)
S = 30

(363, 2.9117)
S = 42

(749, 2.9495)
S = 52

(1 018, 2.9635)
S = 58

(49, 2.8561)
S = 30

(73, 2.8545)
S = 36

(159, 2.8780)
S  = 47

(258, 2.9004)
S = 56

(562, 2.9383)
S = 62

(749, 2.9517)
S = 67

Source: Own calculation, Dodge and Romig (1998) – upper row
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Illustration for the LTPD plans: The LTPD was chosen 2%, i.e. pt = 0.02. The process average fraction 
defective is  = 0.004 and cr = 2 (the cost of inspection of one item by variables is twice the cost of 
inspection of one item by attributes). For inspection a lot with N = 1000 items we shall look for the LTPD 
plan for inspection by attributes, the LTPD plan for inspection by variables and LTPD plan for combined 
inspection. These LTPD plans we shall compare from economical point of view. 

For input parameters of acceptance sampling pt = 0.02, N = 1000,  = 0.004 we find the LTPD plan 
for inspection by attributes in Dodge and Romig (1998). We have:

n = 185, c = 1.

Under the same input parameters of acceptance sampling we can compute the corresponding LTPD 
plan for inspection by variables (see Klůfa, 2010):

n = 104, k = 2.2940.

Moreover, for cr = 2 we can calculate according to (12) the percentage of savings of inspection cost:

S = 20.

It means that under the same protection of consumer the LTPD plan for inspection by variables  
(104, 2.2940) is more economical than the corresponding Dodge-Romig LTPD attribute sampling plan 
(185, 1). Since S = 20, it can be expected approximately 20% saving of the inspection cost.

Under input parameters of acceptance sampling pt = 0.02, N = 1000,  = 0.004 and moreover cr = 2  
we can compute the corresponding LTPD plan for combined inspection (see Klůfa, 2010):

n = 85, k = 2.3221,

and according to (14) the percentage of savings of inspection cost:

S = 31.

It means that under the same protection of consumer the LTPD plan for combined inspection  
(85, 2.3221) is more economical than the corresponding Dodge-Romig LTPD attribute sampling plan 
(185, 1). Since S = 31, it can be expected approximately 31% saving of the inspection cost. 

Combined inspection is clearly the best in this situation – see also Table 2.

Table 2 LTPD plans for inspection by attributes (upper row), variables (middle row) and combined inspection (lower
	 row) and percentage of savings of inspection cost S (in %)    

pt = 0.02, cr = 2.0

/N 500 1 000 4 000 10 000 50 000 100 000

0.0001

(105, 0) (115, 0) (195, 1) (265, 2) (335, 3) (335, 3)

(43, 2.4478)
S = 28

(49, 2.4192) 
S = 46

(62, 2.3736) 
S = 46

(70 ,2.3526) 
S = 46

(83, 2.3256) 
S = 48

(88, 2.3170)
S = 48

(36, 2.4909)
S = 37

(43, 2.4478) 
S = 51

(56, 2.3925)
S = 50

(64, 2.3679) 
S = 50

(77, 2.3371)
S = 52

(83, 2.3256)
S = 52

0.0002
(105, 0) (115, 0) (195, 1) (265, 2) (335, 3) (335, 3)

(57, 2.3891)
S = 22

(68, 2.3574)
S = 46

(87, 2.3186)
S = 52

(100, 2.2992)
S = 48

(120, 2.2760)
S = 54

(129, 2.2675)
S = 66
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CONCLUSION 
From the results of this paper (see Table 1 and Table 2) it follows that the combined inspection (all items 
from the sample are inspected by variables, but remainder of rejected lot is inspected only by attributes) 
is in many situations most economical. This conclusion is valid especially when we chose small values 
for the lot tolerance percent defective LTPD or the average outgoing quality limit AOQL and (see Table 
1 and Table 2) the number of items in the lot N is large and the process average fraction defective   
is small. In this case it makes sense to estimate from economical point of view the parameter cr, i.e.  
the ratio of the cost of inspection of one item by variables and the cost of inspection of the same item 
by attributes (without cr the acceptance plan for combined inspection cannot be determined). Using  
the acceptance plans for combined inspection instead of the corresponding acceptance plans for inspection 
by attributes or acceptance plans for inspection by variables we can achieve significant savings of the 
inspection cost (the combined inspection is always more economical than inspection by variables). 
Numerical investigations show that the percentage of savings of inspection cost is in many situations 
greater than 50%.
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Table 2   	 (continuation)

pt = 0.02, cr = 2.0
/N 500 1 000 4 000 10 000 50 000 100 000

0.0002 (47, 2.4281)
S = 32

(58, 2.3858)
S = 52

(78, 2.3351)
S = 56

(90, 2.3138)
S = 52

(112, 2.2845)
S = 57

(120, 2.2760)
S = 68

0.0003

(105, 0) (185, 1) (330, 3) (395, 4) (520, 6) (585, 7)

(70, 2.3526)
S = 16

(85, 2.3221)
S = 24

(113, 2.2834)
S=34

(131, 2.2657)
S = 36

(160, 2.2441)
S = 38

(172, 2.2369)
S = 40

(56, 2.3925)
S = 28

(71, 2.3502)
S = 33

(100, 2.2992)
S = 40

(118, 2.2780)
S = 41

(147, 2.2530)
S = 43

(160, 2.2441)
S = 44

0.0004

(105, 0) (185, 1) (330, 3) (395, 4) (520, 6) (585, 7)

(83, 2.3256)
S = 10

(104, 2.2940)
S = 20

(142, 2.2567)
S = 32

(165, 2.2410)
S = 38

(204, 2.2210)
S = 42

(221, 2.2141)
S = 44

(64, 2.3679)
S = 24

(85, 2.3221)
S = 31

(124, 2.2721)
S = 40

(148, 2.2523)
S = 43

(188, 2.2284)
S = 46

(204, 2.2210)
S = 47

0.0005

(165, 1) (245, 2) (450, 5) (520, 6) (710, 9) (770, 10)

(97, 2.3033)
S –12

(124, 2.2721)
S = 8

(174, 2.2358)
S = 24

(205, 2.2206)
S = 30

(256, 2.2021)
S = 36

(278, 2.1958)
S = 36

(72, 2.3479)
S = 8

(99, 2.3005)
S = 21

(150, 2.2508)
S = 33

(182, 2.2315)
S = 37

(234, 2.2093)
S = 40

(256, 2.2021)
S = 41

0.0006

(165, 1) (245, 2) (450, 5) (520, 6) (710, 9) (770, 10)

(110, 2.2868)
S 

(145, 2.2544)
S = 2

(211, 2.2181)
S = 22

(251, 2.2037)
S = 34

(318, 2.1861)
S = 44

(346, 2.1804)
S = 50

(78, 2.3351)
S = 3

(114, 2.2823)
S = 18

(180, 2.2325)
S = 31

(221, 2.2141)
S = 41

(290, 2.1927)
S = 49

(318, 2.1861)
S = 54

0.0007

(165, 1) (305, 3) (510, 6) (760, 10) (1 060, 15) (1 180, 17)

(124, 2.2721)
S 

(169, 2.2386)
S 

(254, 2.2027)
S = 17

(306, 2.1888)
S = 24

(393, 2.1723)
S = 30

(429, 2.1670)
S = 30

(83, 2.3256)
S 

(128, 2.2684)
S = 12

(215, 2.2164)
S = 18

(268, 2.1986)
S = 32

(356, 2.1785)
S = 35

(393, 2.1723)
S = 36

Source: Own calculation, Dodge and Romig (1998) – upper row
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